RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2016

FIRST YEAR [BATCH 2015-18]

Date : 18/05/2016 Time : 11 am – 3 pm

MATHEMATICS (Honours) Paper : II

Full Marks : 100

[5×5]

[5]

[5×5]

[Use a separate Answer Book for each group]

<u>Group – A</u>

Answer <u>any five</u> questions from question no. <u>1 to 8</u> :

1. If a, b c are positive rational numbers, prove that

$$a^{a}b^{b}c^{c} \ge \left(\frac{a+b}{2}\right)^{\frac{a+b}{2}} \left(\frac{b+c}{2}\right)^{\frac{b+c}{2}} \left(\frac{c+a}{2}\right)^{\frac{c+a}{2}} \ge \left(\frac{a+b+c}{3}\right)^{a+b+c}.$$
[5]

- 2. Prove that the minimum value of $x^2 + y^2 + z^2$ is $\left(\frac{c}{7}\right)^2$, where x, y, z are positive real numbers subject to the condition 2x + 3y + 6z = c, c being a constant. Find the values of x, y, z for which the minimum value is attained.
- 3. Show that $(\sqrt{2})^{\sqrt{3}}$ has infinitely many values. Show also that the points representing the general values lie on a circle in the complex plane. [2+3]
- 4. Prove that the equation $(x + 1)^4 = a(x^4 + 1)$ is a reciprocal equation if $a \neq 1$ and solve it when a = -2. [1+4]
- 5. a) Find the nature of the roots of the equation x⁷ + x⁵ x³ = 0. [2]
 b) α,β,γ are the roots of the equation x³ + px² + qx + r = 0 (r ≠ 0). Find the equation whose roots

are $\alpha - \frac{\beta \gamma}{\alpha}$, $\beta - \frac{\gamma \alpha}{\beta}$, $\gamma - \frac{\alpha \beta}{\gamma}$. [3]

6. Find the special roots of the equation $x^{15} - 1 = 0$. Deduce that $2\cos\frac{2\pi}{15}$, $2\cos\frac{4\pi}{15}$, $2\cos\frac{8\pi}{15}$, $2\cos\frac{16\pi}{15}$ are the roots of the equation $x^4 - x^3 - 4x^2 + 4x + 1 = 0$. [5]

- 7. Solve the equation $x^3 15x^2 33x + 847 = 0$ by Cardon's method. [5]
- 8. Solve the equation $x^4 + 4x^3 6x^2 + 20x + 8 = 0$ by Ferrari's method. [5]

Answer <u>any five</u> questions from question no. <u>9 to 16</u> :

9. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent. Find a rearrangement of the above series that is divergent. [1+4]

10. a) A function $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and f(x) = 0 for all $x \in \mathbb{Q}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$. [2]

b) Prove that the series $\left(\frac{1}{2}\right)^{p} + \left(\frac{1.3}{2.4}\right)^{p} + \left(\frac{1.3.5}{2.4.6}\right)^{p} + \dots$ is convergent for p > 2 and divergent for $p \le 2$. [3]

- 11. a) If K_1 and K_2 are disjoint non-empty compact sets, show that there exists $\lambda_i \in K_i$ such that $0 < |\lambda_1 - \lambda_2| = \inf \{ |x_1 - x_2| : x_i \in K_i \}, i = 1, 2.$ [3]
 - b) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x) = x \sin \frac{1}{x}, x \neq 0$ = 0, x=0

Prove that f is uniformly continuous on [-1, 1].

- 12. a) Let $f:[0,1] \rightarrow [0,1]$ be continuous on [0,1]. Prove that there exists a point α in [0, 1] such that $f(\alpha) = \alpha$.
 - b) A function $f:[a,b] \to \mathbb{R}$ is continuous on [a, b] and $x_1, x_2, ..., x_n \in [a,b]$. Prove that there is a point $c \in [a,b]$ such that $f(c) = \frac{f(x_1) + f(x_2) + ... + f(x_n)}{n}$. [3]
- 13. a) A function $f : \mathbb{R} \to \mathbb{R}$ satisfies the condition $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

b) If
$$f''(x) \ge 0$$
 on [a,b], prove that $f\left(\frac{x_1 + x_2}{2}\right) \le \frac{1}{2}[f(x_1) + f(x_2)]$ for any two points x_1, x_2 in [a, b]. [3]

14. Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b], $a,b \in \mathbb{R}$ and a < b. Let f'(a) < f'(b) and k be any real number between f'(a) and f'(b). Prove that there exists $c \in (a,b)$ such that f'(c) = k. [5]

15. a) If
$$f(x) = \sin x$$
, prove that $\lim_{h \to 0} \theta = \frac{1}{\sqrt{3}}$, where θ is given by $f(h) = f(0) + hf'(\theta h)$, $0 < \theta < 1$. [3]

b) Test the convergence of the series
$$1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots, x > 0.$$
 [2]

16. a) Evaluate :
$$\lim_{n \to \infty} \left(1 - \frac{1}{2n} \right)^{n+1}$$
. [3]

b) Let
$$f(x) = |x-1| + |x-2|$$
, $x \in [0,3]$. Show that f has a local minimum value at $x = 1$. [2]

<u>Group – B</u>

Answer <u>any two</u> questions from question no. <u>17 to 19</u>:

17. a) Prove that
$$\begin{vmatrix} 1+a_1 & 1 & 1 \\ 1 & 1+a_2 & 1 & 1 \\ 1 & 1 & 1+a_3 & 1 \\ 1 & 1 & 1 & 1+a_4 \end{vmatrix} = a_1a_2a_3a_4\left(1+\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}\right).$$
 [3]

- b) Prove that there exists orthogonal matrix P such that A = BP, where A and B are non-singular matrices such that $AA^{t} = BB^{t}$. [2]
- c) Find the row reduced echelon matrix of A = $\begin{pmatrix} 2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5 \end{pmatrix}$. [5]

18. a) Let $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ be a basis of a vector space V of a field F and a non-zero vector β of V is expressed as $\beta = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 + c_5\alpha_5$; $c_i \in F$. If $c_3 \neq 0$ then prove that $\{\alpha_1, \alpha_2, \beta, \alpha_4, \alpha_5\}$ is a new basis of V. [5]

[2]

[2]

[2×10]

[2]

b) Find the dimension of \mathbb{C} over \mathbb{C} .

- c) Find a basis for \mathbb{R}^3 containing (1,3,1) and (1,5,4).
- 19. a) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{\theta\}$. Prove that for each $v \in V$, there are unique vectors $v_1 \in W_1$ and $v_2 \in W_2$ such that $v = v_1 + v_2$. [2]
 - b) Let $\mathbb{R}_{2\times 2}$ be the real vector space of all 2×2 matrices over \mathbb{R} . Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}_{2\times 2} : a + b = 0 \right\}$. Prove that S is a subspace of $\mathbb{R}_{2\times 2}$. Find a basis and the dimension of S. [2+2+1]
 - c) Let $S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ and $T = \{(x, y, z, w) \in \mathbb{R}^4 : x + 3y 5z + 6w = 0\}$. Are S and T subspaces of \mathbb{R}^4 ? If so, find their basis. [3]

Answer <u>any three</u> questions from question no. <u>20 to 24</u> :

- 20. a) Prove that if for a basic feasible solution x_B of a linear programming problem
 - Maximize z = cxsubject to Ax = b, $x \ge 0$ we have $z_i - c_i \ge 0$ for every column a_j of A, then x_B is an optimal solution. [6]
 - b) Find all the basic solutions of the following equations identifying in each case the basic vectors and the basic variables :

$$x_1 + x_2 + x_3 = 4$$

$$2x_1 + 5x_2 - 2x_3 = 3.$$
[4]

21. a) Use Big-M method to maximize $z = 6x_1 + 4x_2$ subject to the constraints

$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

show that the solution is not unique. Find two solutions.

- b) Prove that the set of all feasible solutions of a linear programming problem is a convex set. [3]
- 22. a) Write down the dual of the following problem and solving the dual problem by simplex method, find the optimal solutions and values of the primal and dual as well :

Maximize	$z = 3x_1 + 4x_2$	
subject to	$x_1 + x_2 \le 10$	
	$2x_1 \! + \! 3x_2 \! \le \! 18$	
	$x_1 \leq 8$	
	$\mathbf{x}_2 \leq 6$	
	$x_1, x_2 \ge 0$	[2+2+2+1]

- b) Formulate Mathematically a Transportation problem (balanced) as an L.P.P having m origins and n destinations (m, n ≥ 2).
- c) What is the number of independent constraints in a balanced Transportation problem? [1]

[2] [3]

[3×10]

[7]

23. a) In a Transportation problem the cost matrix is

	D_1	D_2	D_3	D_4	a _i
O_1	2	5	0	-3	12
O_2	4	6	8	1	15
O_3	4	0	4	5	14
O_4	2	6	1	4	9
b _j	10	8	12	20	50 50

A initial Basic feasible solution is given by : $x_{14} = 12$, $x_{21} = 7$, $x_{24} = 8$, $x_{31} = 3$, $x_{32} = 8$, $x_{33} = 3$, $x_{43} = 9$.

Is this solution optimal and unique? Find the minimum cost of the problem.

b) A machine operator processes five types of items on his machine each week and must choose a sequence for them. The set-up cost per change depends on the item presently on the machine and the set-up to be made according to the following table :

If he processes each type of item once and only once each week, how should he sequence the items on his machine in order to minimize the total set-up cost. [5]

24. a) $x_1 = 1$, $x_2 = 3$, $x_3 = 2$ is a feasible solution of the equations

 $2x_1 + 4x_2 - 2x_3 = 10$

$$10x_1 + 3x_2 + 7x_3 = 33$$

Reduce the above F.S to B.F.S.

b) Prove that if x be any feasible solution to the primal problem maximize z = cx subject to $Ax \le b$, $x \ge 0$ and v be any feasible solution to the corresponding dual, then $cx \le b'v$. [3]

_____ X _____

c) Find the minimum cost solution for the following assignment problem :

	Ι	II	III	IV
1	4	5	3	2
2	1	4	-2	3
3	4	2	1	-5

[2+2+1]

[4]